如何实现一个完美的深拷贝库?(深拷贝的三种实现方式js)
wxin55 2024-11-17 02:44 9 浏览 0 评论
lodash里的cloneDeep函数来解决深拷贝的场景,但你有没有思考过lodash里的cloneDeep函数是如何实现的?
虽然我们可以直接使用lodash,但是学习深拷贝函数的实现原理仍然是非常有意义的,深拷贝也是一道非常经典的前端面试题,,其可以考察面试者的很多方面,比如基本功,代码能力,逻辑能力。
深拷贝看似简单,但要想实现一个完美的深拷贝却并不容易,通过我的面试考察经验来看 ,只有 50%的人能够实现基础版本,能实现完美版本的竟然不到1%,这是因为深拷贝存在很多坑,举个例子:
- 你知道使用JSON.stringify来实现深拷贝是有bug的吗?
- 你会使用循环实现深拷贝?
- 如果拷贝的对象存在循环引用该怎么破解?
如果你回答不上来上面的问题,那么继续往下阅读吧,本文将破解深拷贝的谜题,由浅入深,环环相扣,总共涉及4种深拷贝方式,每种方式都有自己的特点和个性。
深拷贝 VS 浅拷贝
开始之前先科普下什么是深拷贝,和深拷贝有关系的另个一术语是浅拷贝又是什么意思呢?
其实深拷贝和浅拷贝都是针对的引用类型,JS中的变量类型分为值类型(基本类型)和引用类型;对值类型进行复制操作会对值进行一份拷贝,而对引用类型赋值,则会进行地址的拷贝,最终两个变量指向同一份数据
// 引用类型指向同一份数据
var a = {c: 1};
var b = a;
a.c = 2;
console.log(a.c, b.c); // 2, 2 全是2,a b指向同一份数据
对于引用类型,会导致a b指向同一份数据,此时如果对其中一个进行修改,就会影响到另外一个,有时候这可能不是我们想要的结果,如果对这种现象不清楚的话,还可能造成不必要的bug。
最简单的深拷贝
深拷贝的问题其实可以分解成两个问题,浅拷贝+递归,什么意思呢?假设我们有如下数据
var a1 = {b: {c: {d: 1}};
使用递归实现深拷贝的示例代码如下:
function clone(source) {
var target = {};
for(var i in source) {
if (source.hasOwnProperty(i)) {
if (typeof source[i] === 'object') {
target[i] = clone(source[i]); // 注意这里
} else {
target[i] = source[i];
}
}
}
return target;
}
大部分人都能写出上面的代码,但如果问上面的代码有什么问题吗?就很少有人答得上来了,聪明的你能找到问题吗?
其实上面的代码问题太多了,先来举几个例子吧
- 没有对参数做检验
- 判断是否对象的逻辑不够严谨
- 没有考虑数组的兼容
其实吧这三个都是小问题,其实递归方法最大的问题在于爆栈,当数据的层次很深是就会栈溢出
下面的代码可以生成指定深度和每层广度的代码,这段代码我们后面还会再次用到
function createData(deep, breadth) {
var data = {};
var temp = data;
for (var i = 0; i < deep; i++) {
temp = temp['data'] = {};
for (var j = 0; j < breadth; j++) {
temp[j] = j;
}
}
return data;
}
createData(1, 3); // 1层深度,每层有3个数据 {data: {0: 0, 1: 1, 2: 2}}
createData(3, 0); // 3层深度,每层有0个数据 {data: {data: {data: {}}}}
当clone层级很深的话就会栈溢出,但数据的广度不会造成溢出
clone(createData(1000)); // ok
clone(createData(10000)); // Maximum call stack size exceeded
clone(createData(10, 100000)); // ok 广度不会溢出
其实大部分情况下不会出现这么深层级的数据,但这种方式还有一个致命的问题,就是循环引用,举个例子
var a = {};
a.a = a;
clone(a) // Maximum call stack size exceeded 直接死循环了有没有,/(ㄒoㄒ)/~~
关于循环引用的问题解决思路有两种,一种是循环检测,一种是暴力破解,关于循环检测大家可以自己思考下;关于暴力破解我们会在下面的内容中详细讲解
一行代码的深拷贝
有些同学可能见过用系统自带的JSON来做深拷贝的例子,下面来看下代码实现
function cloneJSON(source) {
return JSON.parse(JSON.stringify(source));
}
其实我第一次简单这个方法的时候,由衷的表示佩服,其实利用工具,达到目的,是非常聪明的做法
下面来测试下cloneJSON有没有溢出的问题,看起来cloneJSON内部也是使用递归的方式
cloneJSON(createData(10000)); // Maximum call stack size exceeded
既然是用了递归,那循环引用呢?并没有因为死循环而导致栈溢出啊,原来是JSON.stringify内部做了循环引用的检测,正是我们上面提到破解循环引用的第一种方法:循环检测
var a = {};
a.a = a;
cloneJSON(a) // Uncaught TypeError: Converting circular structure to JSON
破解递归爆栈
其实破解递归爆栈的方法有两条路,第一种是消除尾递归,但在这个例子中行不通,第二种方法就是干脆不用递归,改用循环,当我提出用循环来实现时,基本上90%的前端都是写不出来的代码的,下面来介绍下实现思路
举个例子,假设有如下的数据结构
var a = {
a1: 1,
a2: {
b1: 1,
b2: {
c1: 1
}
}
}
这不就是一个树吗,其实只要把数据横过来看就非常明显了
a
/ \
a1 a2
| / \
1 b1 b2
| |
1 c1
|
1
用循环遍历一棵树,需要借助一个栈,当栈为空时就遍历完了,栈里面存储下一个需要拷贝的节点
首先我们往栈里放入种子数据,key用来存储放哪一个父元素的那一个子元素拷贝对象
然后遍历当前节点下的子元素,如果是对象就放到栈里,否则直接拷贝
function cloneLoop(x) {
const root = {};
const loopList = [{ parent: root, key: undefined, data: x }];
while(loopList.length) {
// 深度优先
const node = loopList.pop();
const parent = node.parent;
const key = node.key;
const data = node.data;
// 初始化赋值目标,key为undefined则拷贝到父元素,否则拷贝到子元素
let res = parent;
if (typeof key !== 'undefined') {
res = parent[key] = {};
}
for(let k in data) {
if (data.hasOwnProperty(k)) {
if (typeof data[k] === 'object') {
// 下一次循环
loopList.push({ parent: res, key: k, data: data[k] });
} else {
res[k] = data[k];
}
}
}
}
return root;
}
改用循环后,再也不会出现爆栈的问题了,但是对于循环引用依然无力应对
破解循环引用
有没有一种办法可以破解循环应用呢?别着急,我们先来看另一个问题,上面的三种方法都存在的一个问题就是引用丢失,这在某些情况下也许是不能接受的
举个例子,假如一个对象a,a下面的两个键值都引用同一个对象b,经过深拷贝后,a的两个键值会丢失引用关系,从而变成两个不同的对象,o(╯□╰)o
var b = {};
var a = {a1: b, a2: b};
a.a1 === a.a2 // true
var c = clone(a);
c.a1 === c.a2 // false
如果我们发现个新对象就把这个对象和他的拷贝存下来,每次拷贝对象前,都先看一下这个对象是不是已经拷贝过了,如果拷贝过了,就不需要拷贝了,直接用原来的,这样我们就能够保留引用关系了,?(? ? ??)嘿嘿
但是代码怎么写呢,o(╯□╰)o,别急往下看,其实和循环的代码大体一样,不一样的地方我用// ==========标注出来了
引入一个数组uniqueList用来存储已经拷贝的数组,每次循环遍历时,先判断对象是否在uniqueList中了,如果在的话就不执行拷贝逻辑了
find是抽象的一个函数,其实就是遍历uniqueList
// 保持引用关系
function cloneForce(x) {
while(loopList.length) {
// =============
// 数据已经存在
let uniqueData = find(uniqueList, data);
if (uniqueData) {
parent[key] = uniqueData.target;
continue; // 中断本次循环
}
// 数据不存在
// 保存源数据,在拷贝数据中对应的引用
uniqueList.push({ source: data, target: res });
// =============
for(let k in data) {
// 省略代码
}
}
return root;
}
function find(arr, item) {
for(let i = 0; i < arr.length; i++) {
if (arr[i].source === item) {
return arr[i];
}
}
return null;
}
下面来验证一下效果,amazing
var b = {};
var a = {a1: b, a2: b};
a.a1 === a.a2 // true
var c = cloneForce(a);
c.a1 === c.a2 // true
接下来再说一下如何破解循环引用,等一下,上面的代码好像可以破解循环引用啊,赶紧验证一下
惊不惊喜,(*^__^*) 嘻嘻……
var a = {};
a.a = a;
cloneForce(a)
看起来完美的cloneForce是不是就没问题呢?cloneForce有两个问题
第一个问题,所谓成也萧何,败也萧何,如果保持引用不是你想要的,那就不能用cloneForce了;
第二个问题,cloneForce在对象数量很多时会出现很大的问题,如果数据量很大不适合使用cloneForce
性能对比
上边的内容还是有点难度,下面我们来点更有难度的,对比一下不同方法的性能
我们先来做实验,看数据,影响性能的原因有两个,一个是深度,一个是每层的广度,我们采用固定一个变量,只让一个变量变化的方式来测试性能
测试的方法是在指定的时间内,深拷贝执行的次数,次数越多,证明性能越好
下面的runTime是测试代码的核心片段,下面的例子中,我们可以测试在2秒内运行clone(createData(500, 1)的次数
function runTime(fn, time) {
var stime = Date.now();
var count = 0;
while(Date.now() - stime < time) {
fn();
count++;
}
return count;
}
runTime(function () { clone(createData(500, 1)) }, 2000);
下面来做第一个测试,将广度固定在100,深度由小到大变化,记录1秒内执行的次数
深度 | clone | cloneJSON | cloneLoop | cloneForce |
500 | 351 | 212 | 338 | 372 |
1000 | 174 | 104 | 175 | 143 |
1500 | 116 | 67 | 112 | 82 |
2000 | 92 | 50 | 88 | 69 |
将上面的数据做成表格可以发现,一些规律
- 随着深度变小,相互之间的差异在变小
- clone和cloneLoop的差别并不大
- cloneLoop > cloneForce > cloneJSON
我们先来分析下各个方法的时间复杂度问题,各个方法要做的相同事情,这里就不计算,比如循环对象,判断是否为对象
- clone时间 = 创建递归函数 + 每个对象处理时间
- cloneJSON时间 = 循环检测 + 每个对象处理时间 * 2 (递归转字符串 + 递归解析)
- cloneLoop时间 = 每个对象处理时间
- cloneForce时间 = 判断对象是否缓存中 + 每个对象处理时间
cloneJSON的速度只有clone的50%,很容易理解,因为其会多进行一次递归时间
cloneForce由于要判断对象是否在缓存中,而导致速度变慢,我们来计算下判断逻辑的时间复杂度,假设对象的个数是n,则其时间复杂度为O(n2),对象的个数越多,cloneForce的速度会越慢
1 + 2 + 3 ... + n = n^2/2 - 1
关于clone和cloneLoop这里有一点问题,看起来实验结果和推理结果不一致,其中必有蹊跷
接下来做第二个测试,将深度固定在10000,广度固定为0,记录2秒内执行的次数
宽度 | clone | cloneJSON | cloneLoop | cloneForce |
0 | 13400 | 3272 | 14292 | 989 |
排除宽度的干扰,来看看深度对各个方法的影响
- 随着对象的增多,cloneForce的性能低下凸显
- cloneJSON的性能也大打折扣,这是因为循环检测占用了很多时间
- cloneLoop的性能高于clone,可以看出递归新建函数的时间和循环对象比起来可以忽略不计
下面我们来测试一下cloneForce的性能极限,这次我们测试运行指定次数需要的时间
var data1 = createData(2000, 0);
var data2 = createData(4000, 0);
var data3 = createData(6000, 0);
var data4 = createData(8000, 0);
var data5 = createData(10000, 0);
cloneForce(data1)
cloneForce(data2)
cloneForce(data3)
cloneForce(data4)
cloneForce(data5)
通过测试发现,其时间成指数级增长,当对象个数大于万级别,就会有300ms以上的延迟
总结
尺有所短寸有所长,无关乎好坏优劣,其实每种方法都有自己的优缺点,和适用场景,人尽其才,物尽其用,方是真理
下面对各种方法进行对比,希望给大家提供一些帮助
clone | cloneJSON | cloneLoop | cloneForce | |
难度 | ☆☆ | ☆ | ☆☆☆ | ☆☆☆☆ |
兼容性 | ie6 | ie8 | ie6 | ie6 |
循环引用 | 一层 | 不支持 | 一层 | 支持 |
栈溢出 | 会 | 会 | 不会 | 不会 |
保持引用 | 否 | 否 | 否 | 是 |
适合场景 | 一般数据拷贝 | 一般数据拷贝 | 层级很多 | 保持引用关系 |
相关推荐
- ES6中 Promise的使用场景?(es6promise用法例子)
-
一、介绍Promise,译为承诺,是异步编程的一种解决方案,比传统的解决方案(回调函数)更加合理和更加强大在以往我们如果处理多层异步操作,我们往往会像下面那样编写我们的代码doSomething(f...
- JavaScript 对 Promise 并发的处理方法
-
Promise对象代表一个未来的值,它有三种状态:pending待定,这是Promise的初始状态,它可能成功,也可能失败,前途未卜fulfilled已完成,这是一种成功的状态,此时可以获取...
- Promise的九大方法(promise的实例方法)
-
1、promise.resolv静态方法Promise.resolve(value)可以认为是newPromise方法的语法糖,比如Promise.resolve(42)可以认为是以下代码的语...
- 360前端一面~面试题解析(360前端开发面试题)
-
1.组件库按需加载怎么做的,具体打包配了什么-按需加载实现:借助打包工具(如Webpack的require.context或ES模块动态导入),在使用组件时才引入对应的代码。例如在V...
- 前端面试-Promise 的 finally 怎么实现的?如何在工作中使用?
-
Promise的finally方法是一个非常有用的工具,它无论Promise是成功(fulfilled)还是失败(rejected)都会执行,且不改变Promise的最终结果。它的实现原...
- 最简单手写Promise,30行代码理解Promise核心原理和发布订阅模式
-
看了全网手写Promise的,大部分对于新手还是比较难理解的,其中几个比较难的点:状态还未改变时通过发布订阅模式去收集事件实例化的时候通过调用构造函数里传出来的方法去修改类里面的状态,这个叫Re...
- 前端分享-Promise可以中途取消啦(promise可以取消吗)
-
传统Promise就像一台需要手动组装的设备,每次使用都要重新接线。而Promise.withResolvers的出现,相当于给开发者发了一个智能遥控器,可以随时随地控制异步操作。它解决了三大...
- 手写 Promise(手写输入法 中文)
-
前言都2020年了,Promise大家肯定都在用了,但是估计很多人对其原理还是一知半解,今天就让我们一起实现一个符合PromiseA+规范的Promise。附PromiseA+规范地址...
- 什么是 Promise.allSettled()!新手老手都要会?
-
Promise.allSettled()方法返回一个在所有给定的promise都已经fulfilled或rejected后的promise,并带有一个对象数组,每个对象表示对应的pr...
- 前端面试-关于Promise解析与高频面试题示范
-
Promise是啥,直接上图:Promise就是处理异步函数的API,它可以包裹一个异步函数,在异步函数完成时抛出完成状态,让代码结束远古时无限回掉的窘境。配合async/await语法糖,可...
- 宇宙厂:为什么前端离不开 Promise.withResolvers() ?
-
大家好,很高兴又见面了,我是"高级前端进阶",由我带着大家一起关注前端前沿、深入前端底层技术,大家一起进步,也欢迎大家关注、点赞、收藏、转发。1.为什么需要Promise.with...
- Promise 新增了一个超实用的 API!
-
在JavaScript的世界里,Promise一直是处理异步操作的神器。而现在,随着ES2025的发布,Promise又迎来了一个超实用的新成员——Promise.try()!这个新方法简...
- 一次搞懂 Promise 异步处理(promise 异步顺序执行)
-
PromisePromise就像这个词的表面意识一样,表示一种承诺、许诺,会在后面给出一个结果,成功或者失败。现在已经成为了主流的异步编程的操作方式,写进了标准里面。状态Promise有且仅有...
- Promise 核心机制详解(promise机制的实现原理)
-
一、Promise的核心状态机Promise本质上是一个状态机,其行为由内部状态严格管控。每个Promise实例在创建时处于Pending(等待)状态,此时异步操作尚未完成。当异步操作成功...
- javascript——Promise(js实现promise)
-
1.PromiseES6开始支持,Promise对象用于一个异步操作的最终完成(包括成功和失败)及结果值的表示。简单说就是处理异步请求的。之所以叫Promise,就是我承诺,如果成功则怎么处理,失败怎...
你 发表评论:
欢迎- 一周热门
- 最近发表
-
- ES6中 Promise的使用场景?(es6promise用法例子)
- JavaScript 对 Promise 并发的处理方法
- Promise的九大方法(promise的实例方法)
- 360前端一面~面试题解析(360前端开发面试题)
- 前端面试-Promise 的 finally 怎么实现的?如何在工作中使用?
- 最简单手写Promise,30行代码理解Promise核心原理和发布订阅模式
- 前端分享-Promise可以中途取消啦(promise可以取消吗)
- 手写 Promise(手写输入法 中文)
- 什么是 Promise.allSettled()!新手老手都要会?
- 前端面试-关于Promise解析与高频面试题示范
- 标签列表
-
- hive行转列函数 (63)
- sourcemap文件是什么 (54)
- display none 隐藏后怎么显示 (56)
- 共享锁和排他锁的区别 (51)
- httpservletrequest 获取参数 (64)
- jstl包 (64)
- qsharedmemory (50)
- watch computed (53)
- java中switch (68)
- date.now (55)
- git-bash (56)
- 盒子垂直居中 (68)
- npm是什么命令 (62)
- python中+=代表什么 (70)
- fsimage (51)
- nginx break (61)
- mysql分区表的优缺点 (53)
- centos7切换到图形界面 (55)
- 前端深拷贝 (62)
- kmp模式匹配算法 (57)
- jsjson字符串转json对象 (53)
- jdbc connection (61)
- javascript字符串转换为数字 (54)
- mybatis 使用 (73)
- 安装mysql数据库 (55)