标量、向量、矩阵、张量之间的区别和联系
wxin55 2025-05-08 07:10 2 浏览 0 评论
前言
深度学习的表现之所以能够超过传统的机器学习算法离不开神经网络,然而神经网络最基本的数据结构就是向量和矩阵,神经网络的输入是向量,然后通过每个矩阵对向量进行线性变换,再经过激活函数的非线性变换,通过层层计算最终使得损失函数的最小化,完成模型的训练。所以要想学好深度学习,对这些基础的数据结构还是要非常了解的。
标量
标量(scalar):一个标量就是一个单独的数(整数或实数),不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。标量通常用斜体的小写字母来表示,例如:
标量就相当于Python中定义的
x = 1
向量
向量(vector):一个向量表示一组有序排列的数,通过次序中的索引我们能够找到每个单独的数,向量通常用粗体的小写字母表示,例如:
向量中的每个元素就是一个标量,向量中的第i个元素用
表示,向量相当于Python中的一维数组
import numpy as np
#行向量
a = np.array([1,2,3,4])
矩阵
矩阵(matrix):矩阵是一个二维数组,其中的每一个元素由两个索引来决定A(i,j),矩阵通常用加粗斜体的大写字母表示,例如:
我们可以将矩阵看做是一个二维的数据表,矩阵的每一行表示一个对象,每一列表示一个特征。在Python中的定义为
import numpy as np
#矩阵
a = np.array([[1,2,3],[4,5,6],[7,8,9]])
张量
张量(tensor):超过二维的数组,一般来说,一个数组中的元素分布在若干维坐标的规则网格中,被称为张量。如果一个张量是三维数组,那么我们就需要三个索引来决定元素的位置A(i,j,k),张量通常用加粗的大写字母表示,例如:
import numpy as np
#张量
a = np.array([[[1,2],[3,4]],[[5,6],[7,8]]])
标量向量矩阵张量之间的联系
通过上面的介绍可以总结一下,标量是0维空间中的一个点,向量是一维空间中的一条线,矩阵是二维空间的一个面,三维张量是三维空间中的一个体。也就是说,向量是由标量组成的,矩阵是向量组成的,张量是矩阵组成的。
用一个比较通俗的例子可以概括为:假设你手中拿着一根棍子,标量就是我们只知道棍子的长度,但是不知道棍子指向的方向。向量就是我们除了知道棍子的长度之外还知道棍子指向的是左边还是右边,矩阵就是除了知道向量知道的信息外还知道棍子是朝上还是朝下,张量就是除了知道矩阵知道的信息外还知道棍子是朝前还是朝后。
线性代数常用的运算
一、向量的运算
1.点积
点积(dot product)又被称为数量积(scalar product)或者内积(inner product):是指接受在实数R上的两个向量并返回一个实数值标量的二元运算。
代数意义
import numpy as np
a = np.array([1,2,3])
b = np.array([3,2,1])
#向量的点积运算
print(np.dot(a,b))#10
几何意义
这个运算可以简单地理解为:在点积运算中,第一个向量投影到第二个向量上(这里,向量的顺序是不重要的,点积运算是可交换的),然后通过除以它们的标量长度来“标准化”。这样,这个分数一定是小于等于1的,可以简单地转化成一个角度值。利用向量积的几何意义,我们可以用来计算两个向量之间的夹角。
2.外积
import numpy as np
a = np.array([0,2])
b = np.array([3,3])
#向量的外积
c = np.cross(b,a)
print(c)
通过外积我们可以用来快速求解平行四边形或三角形的面积,需要注意的是在计算向量积时候,向量之间的顺序,顺序相反会得到相反的结果(正数和负数),判断方向时采用右手定则。
3.向量的范数
二、矩阵的运算
1 .转置
转置(transpose):是矩阵的重要操作之一。矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线被称为主对角线(main diagonal)。如下图所示
其实就是将原矩阵的行变成了转置矩阵的列或将原矩阵的列变成转置矩阵的行。
2.矩阵的范数
3.常见的矩阵
- 方阵:也就方形矩阵,矩阵的列数与行数相等
- 对称矩阵:对称矩阵是一个方阵,矩阵的元素关于对角线对称,它的转置和自身相等,即
- Jacobian矩阵:Jacobian矩阵是函数的一阶偏导数以一定方式排列成的矩阵
- 单位矩阵:主对角线上的元素都为1,其余元素全为0的n阶矩阵称为n阶单位矩阵
- 正交矩阵
4.矩阵的乘法
矩阵乘法:是最常见的矩阵乘积,两个矩阵相乘,必须要满足前一个矩阵的列数等于后一个矩阵的行数,一个m×p的矩阵乘以一个p×n会得到一个m×n的矩阵。运算规则如下
numpy的实现如下,和向量积一样
import numpy as np
a = np.array([[1,2,3],
[-1,3,-2]])
b = np.array([[1,2],
[3,4],
[1,3]])
#矩阵相乘
print(np.dot(a,b))#或者使用np.matmul(a,b)
"""
[[10 19]
[ 6 4]]
"""
5.矩阵哈达马积
哈达马积(Hadamard product):也叫矩阵的元素相乘,矩阵对应元素相乘,两个矩阵在进行元素相乘的时候必须要有相同的行数和列数,计算公式如下
在Python中计算两个矩阵元素相乘的乘积直接相乘即可,如果两个相乘的矩阵行数和列数不相等会报错,相乘的时候其中一个可以是标量或向量,会自动使用广播,标量乘以矩阵中的所有元素,相当于对矩阵的元素做一个缩放
import numpy as np
a = np.array([[1,2],[3,4]])
b = np.array([[2,2],[1,3]])
#矩阵的元素相乘
c = a * b
print(c)
"""
[[ 2 4]
[ 3 12]]
"""
#矩阵的广播
d = a * 2
print(d)
"""
[[2 4]
[6 8]]
"""
d = a * np.array([1,2])
print(d)
"""
[[1 4]
[3 8]]
"""
6.克罗内克积
克罗内克积(Kronecker Product):克罗内克积是两个任意大小的矩阵间的运算,符号记作 。克罗内克积也被称为直积或张量积。计算过程如下例所示:
相关推荐
- js获取上传文件类型以及大小的方法
-
前端web上传文件时,需要在上传之前判断一下文件的类型以及文件的大小,HTML为前端的标记语言是无法做到这一点,只能使用javascript动态脚本代码来实现。js获取上传文件大小的方法示例代码:&...
- 资源分享:移动设备类型判断JS(什么叫移动设备)
-
相信很多童鞋在实际开发中都会遇到需要判断设备类型来进行不同页面跳转处理,例如手机端访问移动页面,pc端访问pc页面亦或是ios和安卓扫描同一个二维码跳转至不同的下载页面。有这样一种做法当然了你可以使用...
- JS学习笔记:三、数据类型(js六中数据类型)
-
上节知识点回顾:1.什么是变量2.变量的声明3.一次性声明多个变量并赋值4.变量名的规范5.变量的使用本讲内容:数据类型1.数据类型分类原始类型(基本类型)+引用类型原始类型:数字、字符串、布尔类...
- JavaScript中常用数据类型,你知道几个?
-
本文首发自「慕课网」,想了解更多IT干货内容,程序员圈内热闻,欢迎关注!作者|慕课网精英讲师Lison这篇文章我们了解一下JavaScript中现有的八个数据类型,当然这并不是JavaScr...
- JS自有类型系统的问题区分竟如此简单?
-
嗨,我是勾勾。今天想要和你分享的是如何区分强弱类型与JS自有类型系统的问题。类型系统的区分我们在区分不同编程语言时会有一些界定的标准。通常来讲,我们会从类型安全和类型检查上进行区分。类型安全强类型弱类...
- 抛弃 typeof,这样判断 JavaScript 类型更准确
-
JavaScript作为一门动态类型语言,类型判断一直是开发者面临的常见挑战。众所周知,typeof操作符存在诸多局限性,无法准确区分数组、对象、null等类型。那么,有没有更精确、更优雅的类型判断方...
- 有哪些好玩的 Python 代码?(python有什么好玩的项目)
-
Python是一门非常强大且灵活的编程语言,它不仅可以用来编写复杂的软件应用,还能用来创造一些有趣的小程序和游戏。以下是一些好玩的Python代码示例,涵盖了基础语法、字符串处理、图形绘制等多个...
- Python统计快乐8的两码组合数据随机新的两码三码
-
我们利用Python统计出快乐8的两码组合数据,来生成新的快乐8选二,选三等组合fromcollectionsimportCounterimportrandom#输入新的快乐8两码统计...
- 10 个鲜为人知的 Python 可视化概念和技巧
-
数据可视化可视化是我们以各种可视化形式描述数据的操作,从图表、图形到信息图形。它是探索性数据分析(EDA)中最重要的部分之一,因为它使我们能够轻松掌握变量之间的关系以及对后期特征工程和建模有用的数...
- 用Python搞个随机简单的迷宫(python做迷宫)
-
为了增加一点趣味打发鼓噪的情绪,玩个简单的迷宫,方便以后搞游戏迷宫。堵路的就简单用#符号吧,如果弄成界面的话可以用图片来,比图墙的图片。因为是随机的,不是固定的一个迷宫,我们少不了random模块...
- 面试干货——某度Python面试题,转发收藏
-
目录1、Python是如何进行内存管理的?2、什么是lambda函数?它有什么好处?3、Python里面如何实现tuple和list的转换?4、请写出一段Python代码实现删除一个list里面的重复...
- Python while循环深度解析:从基础到实战,一文全掌握!
-
一、循环的本质:重复执行的魔法在编程世界中,循环是实现自动化的核心工具。想象你需要重复做100次相同的事情,手动编写100次代码显然不现实。这时候,循环就像一位不知疲倦的助手,帮你完成重复性任务。Py...
- 如何在 Python 中随机排列列表元素
-
在本教程中,我们将学习在Python中如何打乱列表元素顺序,随机排列列表元素。如何随机排列列表是一项非常有用的技能。它在开发需要选择随机结果游戏中非常有用。它还适用于数据相关的工作中,可能需要提取...
- Python快速入门教程7:循环语句(python循环语句有哪些)
-
一、循环语句简介循环语句用于重复执行一段代码块,直到满足特定条件为止。Python支持两种主要的循环结构:for循环和while循环。二、for循环基本语法for循环用于遍历序列(如列表、元组、字符串...
- 用Python进行机器学习(6)随机森林
-
上一节我们讲到了决策树这个算法,但是一棵决策树可能会存在过拟合的现象,而且对数据微小的变化也比较敏感,为了解决这些问题,我们可以通过多棵树的方式,也就是今天要介绍的随机森林。随机森林算法也就是Rand...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- hive行转列函数 (63)
- sourcemap文件是什么 (54)
- display none 隐藏后怎么显示 (56)
- 共享锁和排他锁的区别 (51)
- httpservletrequest 获取参数 (64)
- jstl包 (64)
- qsharedmemory (50)
- watch computed (53)
- java中switch (68)
- date.now (55)
- git-bash (56)
- 盒子垂直居中 (68)
- npm是什么命令 (62)
- python中+=代表什么 (70)
- fsimage (51)
- nginx break (61)
- mysql分区表的优缺点 (53)
- centos7切换到图形界面 (55)
- 前端深拷贝 (62)
- kmp模式匹配算法 (57)
- jsjson字符串转json对象 (53)
- jdbc connection (61)
- javascript字符串转换为数字 (54)
- mybatis 使用 (73)
- 安装mysql数据库 (55)